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Abstract 

 

 This thesis develops a tractable, statistically sound hypothesis testing framework 

for the detection, characterization, and estimation of non-random structure in clandestine 

social networks.  Network structure is studied via an observed adjacency matrix, which is 

assumed to be subject to sampling variability.  The vertex set of the network is 

partitioned into k mutually exclusive and collectively exhaustive subsets, based on 

available exogenous nodal attribute information.  The proposed hypothesis testing 

framework is employed to statistically quantify a given partition’s relativity in explaining 

the variability in the observed adjacency matrix relative to what can be explained by 

chance.  As a result, valuable insight into the true structure of the network can be 

obtained.  Those partitions that are found to be statistically significant are then used as a 

basis for estimating the probability that a relationship tie exists between any two vertices 

in the complete vertex set of the network.  The proposed methodology aids in the 

reduction of the amount of data required for a given network, focusing analyses on those 

attributes that are most promising.  Ample effort is given to both model demonstration 

and application, including an example using open-source data, illustrating the potential 

use for the defense community and others.   
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EXAMINING CLANDESTINE SOCIAL NETWORKS FOR THE PRESENCE OF 

NON-RANDOM STRUCTURE 

 

1. Introduction 

1.1. Background 

 In the Global War on Terror, United States forces are pitted against an entrenched 

enemy practicing guerilla tactics to wage an asymmetric war.  While much is known 

about the enemy, much still remains hidden.  The more information which is available, 

the better US forces are able to combat the hidden enemy.  Certainly, fighting against 

foot soldiers is not the only primary goal of US efforts, but rather striking a blow to the 

heart of the terrorist network responsible for the recruitment and employment of enemy 

troops is a central element of strategy.  As more information is uncovered, the task which 

remains is to gauge the quality of the data.  Spending man-hours on analyzing extraneous 

information is a waste of both time and effort, while man-hours spent analyzing salient 

information is surely the most beneficial.  To this end, research was conducted where the 

main goal was a framework capable of sifting data to reveal the most promising routes to 

pursue.   

1.2. Overview 

 Clandestine social networks are comprised of individuals, some or all of whom 

are, attempting to operate in secret.  Because of the desire to remain undetected, players 

in a clandestine social network practice operational security (OPSEC) and military 

deception (MILDEC).  Any observation of a clandestine network is influenced by 
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OPSEC and MILDEC measures.  These measures help the network to remain hidden and 

mislead the observer’s perception of the network layout.  Because of this, the 

observations of a clandestine social network can be likened to spotting an iceberg.  As 

with an iceberg, the majority of the network is often hidden and the total size can only be 

estimated.  The part that is observed may represent only a fraction of the total network.  

Due to this hidden nature, any observations of the players and links in a clandestine 

network must be inspected to ensure accuracy and that observations were not influenced 

by deceptive actions.   

 The goal of this thesis is to examine clandestine social networks for the presence 

of non-random structure by employing a hypothesis test.  As constructed, the hypothesis 

test will be tractable and capable of estimating undirected dyad probabilities between 

network nodes.  The observed network dyads are stored in an adjacency matrix, but, due 

to OPSEC and MILDEC measures, it is assumed that some level of noise / error is 

introduced in the process of gathering network data.   

 The developed test uses nodal attributes to partition the observed network into 

levels which are mutually exclusive and collectively exhaustive. The network structure 

variability found in the adjacency matrix is tested to see if it is explained by the partition 

under investigation.  If the attribute partition does explain the observed network structure 

variability, it is investigated in an attempt to yield insight into the true network’s 

structure.  If the attribute partition does not explain the observed network structure 

variability, it is discarded from further analysis.  One major benefit of this is to help 

analysts sift through the mountains of data on hand and focus on the salient network 

partitions.   
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1.3. Problem Statement and Research Objectives / Focus 

 The goal of this research is to:  

1) Test observed clandestine social networks for the presence of non-random 

structure based on nodal attribute partitions.   

2) Identify the attributes explaining adjacency matrix variability.   

3) Estimate the probability of the existence of arcs.   

4) Perform social network analyses based on these findings.   

 Attribute partitions appearing to explain network structure are used to further 

analyze the observed network.  If a particular partition explains the variability in the 

observed adjacency matrix more than another partition, it must be weighted to reflect its 

contribution to the network’s structure.  Given this weighted potential, the probability of 

the existence of arcs can be calculated by taking into account all the partitions explaining 

adjacency matrix variability.   

 One of the major goals of this research was to develop a hypothesis testing 

framework capable of explaining the true structure of the network found in the adjacency 

matrix.  Certainly, due to the members of the network practicing OPSEC and MILDEC, 

there may exist arcs that are not observed.  Through study of the network attribute 

partitions, the probability of dyad formation can be estimated.  These arcs are based upon 

the network attribute partitions explaining adjacency matrix variability and are weighted 

according to each attribute’s contribution to the formation of the observed network.  This 

will be extremely useful when a new organization arises where nothing is known about 

either structure or layout.   



1-4  

1.4. Assumptions 

 A brief list of model assumptions is presented here.  While these assumptions are 

elaborated upon in the Methodology section, presenting them here gives the reader a 

quick reference to the scope of this model.   

1) The arcs of the observed network are undirected.   

2) A complete set of attribute data (used for the creation of the partitions) is 

available for each network node.     

3) Partitions of the network are mutually exclusive and collectively 

exhaustive.   

1.5. Implications 

 This research presents a model which can objectively test observed social 

networks for structure based on attribute partitions.  The ultimate goal of clandestine 

social network study is to understand the structure so that analysts can see past OPSEC 

and MILDEC measures, yielding the ability to disrupt the network.  Since social 

networks are dynamic by nature, the same is also true for clandestine social networks.  

The network will evolve to adapt to disruption, resulting in a new network where ties are 

modified in order to carry on the work of the previous network.  It is this current network 

to which the model needs to be applied next.  Different partitions might now better 

explain the variability of the observed adjacency matrix than during previous network 

iterations.  Identifying these attribute partitions is possible using the network model.  

While focused on clandestine networks of interest to national defense forces, the 

approach may be applied to traditional sociological social networks.   
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1.6. Preview 

 While clandestine networks may be large, smaller operational networks are used 

in this study for the sake of brevity.  These networks are partitioned based upon the 

attributes of the individuals comprising the network.  These partitions are examined to 

see if they adequately explain the variability found in the observed adjacency matrix.  

Focusing on the partitions explaining network variability, further network measures and 

tools are applied.  The results of the model demonstrate the potential use it has for the 

United States Air Force and wider Department of Defense community.   
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2. Literature Review 

2.1. Introduction 

 In the study of social networks, a variety of tools and measures are available to 

aid analysis.  While some were developed specifically to study social networks, many 

have been gleaned from various other technical disciplines.  For instance, statistical 

network models have been developed to aid the study of dyad existence.  The first section 

of this chapter focuses on the network specific measure of centrality, which seeks to find 

the key individuals in a social network.  The second section provides a general overview 

of the key pertinent models.  In many cases, different models motivated subsequent 

development, as researchers endeavored to improve the models currently in use.  Finally, 

the statistical method of clustering is detailed.  Clustering, which groups data points 

based on analyst specified attributes, is applicable to social networks where the data 

points are comprised of the individuals in the network.  While taken from the technical 

field of statistics, clustering is a method with direct application to social networks.   

2.2. Centrality Measures 

 Network modeling focuses on abstractly representing a construct used to transmit 

some sort of material or information (Wasserman and Faust, 1994: 4).  Two everyday 

examples of physical networks are the postal system transporting mail and the airplane 

transportation system moving people.  In either case, the point of both networks is to 

transport some kind of material from one location to another, but the material transported 

need not be physical.  An example of non-physical material transportation is information 

passed between two people such as baseball game scores or personal reviews of a film.  
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This information can pass from one person to the next, creating a non-tangible network to 

transmit this information.  Social network analysis (SNA) focuses on modeling a network 

of people interacting together.  The issue of centrality has motivated much of the research 

done in the field of SNA.  A core goal of SNA centrality is to pinpoint the most important 

individual in a social network based on their position in the network (Frank, 2002: 385).   

 Finding the central node, in this case an individual person, yields a different result 

depending on the network being modeled.  In the case of a newly observed terrorist 

network, the central or well connected node might be the best guess as to the leader or 

possibly the individual failing to follow OPSEC practices.  In the case of a group of 

baseball fans, the results would be wholly different.  Finding the most central node might 

pinpoint the individual who attended the game the previous night, the person whose cable 

subscription happens to carry the game, or perhaps just the most avid fan of the group.  

The issue of centrality must be considered in light of the network being observed.  This 

applies to both physical and non-physical networks.   

 In order to further explore this issue, five measures of social network centrality 

are reviewed: Degree Centrality, Betweenness Centrality, Closeness Centrality, 

Informational Centrality, and Eigenvector Centrality.  All these measures of centrality are 

explored in respect to networks containing undirected arcs.  While representing the more 

popular measures, this list should not be viewed as all inclusive, as SNA centrality 

measures are the focus of much research, both past and present.   
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2.2.1. Degree Centrality 

 Degree Centrality simply counts the number of arcs attached to each node.  The 

higher the number of arcs, the more central the node is structurally in the network.  With 

this measure, the node’s centrality index can range from [1, ∞), assuming that any node 

not connected to the network is not represented in the model.  Rather than having large 

numbers attached to each node, it is useful to normalize the degree centrality value.  This 

is done by simply dividing the total number of arcs attached to the node by the total 

number of arcs in the network (Wasserman and Faust, 1994: 178) and yields a degree 

centrality statistic in the range of [0, 1], where the higher the statistic value, the more 

central the node.   

 An example of degree centrality can be seen in a social network modeling a 

lieutenant and his flight (see Figure 2-1).  Every node (person) in the flight is under the 

command of the “lieutenant” node.  In fact, there is a direct arc from the lieutenant to 

every flight member.  A graph of this model would look like a hub and spoke, where the 

lieutenant node is in the middle and all the flight members are gathered around him.  The 

lieutenant, able to command the entire flight, is the most central node with a degree 

centrality measure of one.   
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Figure 2-1: Example of Degree Centrality 

 

2.2.2. Betweenness Centrality 

 Betweenness Centrality can be thought of as dealing with the “middleman” 

(Borgatti, 2005: 60).  The middleman is the node somewhere in the chain between the 

two endpoints that cannot be avoided.  According to the betweenness centrality measure, 

a node that cannot be avoided is the central node in the network.  In order to understand 

the concept of betweenness, the idea of a “geodesic” is introduced.  A geodesic is the 

shortest path from one point in a network to another (Wasserman and Faust, 1994: 110).  

That is, if two paths connect node A to node B where one path is three arcs in length and 

the other is five arcs in length, then the path with three arcs is the geodesic.  The case of 
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more than one shortest path with the same number of arcs is referred to as multiple 

geodesics.   

 To find the normalized betweenness centrality statistic of a network, the total 

number of times a particular node is traversed for all geodesics of the network is 

enumerated.  Next, the total nodes in the network minus one is multiplied by the total 

nodes in the network minus two and then divided by two.  This value is used to divide the 

total number of times the network was traversed (Wasserman and Faust, 1994: 188).  

Like the other centrality statistics, the normalized betweenness statistic ranges from      

[0, 1].   

 To illustrate betweenness, one can consider an Air Force Scientific and Technical 

Information (STINFO) office (see Figure 2-2).  The job of a STINFO office is to review 

all published material before dissemination to ensure that the material meets the proper 

classification level of the receiving organization, in this case a contractor.  In this way, all 

published material must pass through the chokepoint of the STINFO office.  The example 

has the STINFO node positioned between the AF organization and the contractor 

organization.  On one side of the STINFO node lies the AF organization’s network, while 

on the other side of the contractor node is the contractor organization’s network.  

According to the betweenness centrality measure, the STINFO office is most central, as 

all published material must pass through it.  The STINFO office is “between” the AF 

organization and all other organizations with a betweenness centrality measure of .7556.   
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Figure 2-2: Example of Betweenness 

 

2.2.3. Closeness Centrality 

 Like betweenness, Closeness Centrality also makes use of geodesics, measuring 

how far one node is from all the other nodes in the social network.  The node with the 

highest measure of closeness centrality is the one able to reach the rest of the nodes in the 

network over the minimum amount of arcs.  In order to find the closeness statistic, the 

number of geodesics for each node must be calculated.  Next, the total number of nodes 

minus one is divided by the total number of geodesics for each individual node (Borgatti, 

2005: 59).  The normalized closeness centrality statistic, like the betweenness statistic, is 

in the range of [0, 1].  The node having the highest closeness statistic is considered the 

most central node.  In the case of small networks, this is fairly simple, but, as the network 
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grows, so does the difficulty of identifying the geodesics of each node, motivating the 

analyst to make use of network programs and tools.   

 To illustrate the closeness centrality measure, think of a secretary servicing an 

office in a business organization (see Figure 2-3).  Not only does the secretary service the 

entire office, but the secretary also serves as the most direct link between that office and 

others in the company organization.  In servicing just the office, the secretary can be 

viewed as being the most central node by both the degree and closeness centrality 

measures.  Due to the direct link to the other offices in the organization, the secretary is 

viewed as the most central with a closeness centrality measure of one.   

 
Figure 2-3: Example of Closeness 
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2.2.4. Informational Centrality 

 Unlike the centrality measures of degree, closeness, and betweenness, the 

measure of Informational Centrality relates the amount of information each node (person) 

transmits (Wasserman and Faust, 1994: 192).  In fact, not only does the normalized 

informational centrality statistic lie in the range of [0, 1], the sum of all the nodal 

statistics must equal to one.  This means the measure assumes that the more information 

one node has the less all the other nodes have.  Should one node have a statistic of one, 

the rest of the nodes have a statistic of zero, indicating that only one person in the 

network has the information necessary for the network to operate.  Should that node be 

eliminated, the network would crumble.  In this manner, informational centrality 

identifies the central node.   

 Calculation of the informational centrality statistics is done partly though linear 

algebra to manipulate a matrix.  The matrix used for the manipulation is a sociomatrix 

and contains all the numeric arc lengths of the network (Wasserman and Faust, 1994: 70).  

Once the manipulation of the sociomatrix is complete, its diagonal elements are used in 

the final calculation of the normalized informational centrality statistic.   

 Since informational centrality measures the amount of information emanating 

from a node, an example of this is a network model representing the information flow 

between the President of the United States and Lt Bagofdonuts (see Figure 2-4).  In this 

model, the President node and the Lt node are directly connected.  Theoretically, 

information flows in both directions.  Obviously, the informational centrality statistic for 

the President will be close to, if not exactly, one.  Because of this, the Lt’s informational 

centrality statistic is close to, if not exactly, zero.  While a network model of just the 
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President and the Lt is an oversimplified example, it clearly illustrates the idea of 

informational centrality.   

 
Figure 2-4: Example of Informational Centrality 

 

2.2.5. Eigenvector Centrality 

 Eigenvector Centrality, like informational centrality, also involves linear algebra. 

Eigenvector centrality requires that a “correlation” matrix be constructed.  Similar to an 

adjacency matrix, the correlation matrix is an N x N matrix containing the details of the 

arcs and nodes constructing the social network where the columns and rows correspond 

to the nodes of the network (Bonacich, 1972: 113).  The elements of the correlation 

matrix are either 1 or 0 depending on whether an arc exists between nodes or does not, 

respectively.  For the sake of illustration, call the N x N correlation matrix Q.  If an arc 

exists between nodes A and B, element QAB = 1; otherwise, QAB = 0.  Using this test, all 

the elements of the correlation matrix are populated.  Note that in a social network of 

undirected arcs,       QAB = QBA.  Because of this, the correlation matrix is symmetric with 

the diagonal row being zero, as there is no arc from a node to itself.  Eigenvector 

centrality requires a symmetric matrix.  Should the social structure have directed arcs 
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such that an arc is not reciprocated, a non-symmetric correlation matrix would occur and 

the measure of eigenvector centrality cannot be used.   

 To find the eigenvector centrality statistic, the eigenvalues of the correlation 

matrix are calculated.  The eigenvalues are then rank ordered from largest to smallest.  

The eigenvector corresponding to the largest eigenvalue is the most central node of the 

network (Bonacich, 1972: 114).  Conversely, the eigenvector corresponding to the 

smallest eigenvalue is the least central node.  With the use of computer programs to 

calculate the eigenvectors and eigenvalues of matrices, the most difficult part of 

eigenvector centrality often resides in correctly modeling the observed social network.   

 The problem with using the centrality measures of degree, betweenness, and 

closeness is that the analyst must decide ahead of time on which centrality measure to 

focus.  Because of this, these three measures are descriptive rather than prescriptive.  

While it is useful to know which nodes are central, predicting which nodes have the 

potential to become central is also valuable.  Informational centrality is also descriptive 

and relies heavily on expert opinion when assigning values to the sociomatrix.  These 

assigned values are then used to find the most central nodes.   

 In an attempt to find a prescriptive measure, eigenvector centrality is a positive 

step.  It bases the centrality measure solely upon the correlation matrix and does not look 

for a particular network relationship.  Unfortunately, eigenvector centrality falls short of 

being purely prescriptive, as it only uses the correlation matrix to determine the most 

central nodes.  Since the correlation matrix only takes into account existing arcs, it is 

unable to weight the values of the arcs.  Weighting could be based on a number of 
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personal social aspects ranging from marital status to criminal background to level of 

education.   

 Applying eigenvector centrality to the informational centrality network example, 

an arc observed between Lt Bagofdonuts and the President carries the same weight, 

regardless of the obvious fact of the President being much more central than the 

Lieutenant.  Eigenvector centrality does not take into consideration any possible 

weighting between nodes.  Accounting for social attributes could improve the usefulness 

of eigenvector centrality, possibly yielding a predictive measure rather than just a 

descriptive measure.   

2.3. Statistical Models 

 Social networks are constructed to facilitate the study of interactions within a 

social structure.  Through SNA, relationships between people are studied for meaning 

(Wasserman and Faust, 1994: 3).  Statistical models have been developed to objectively 

test the significance of these social network relationships.  It is important to understand 

the development of current SNA statistical modeling techniques in order to better grasp 

the results of these statistical tests.   

 Before detailing the statistical models used for social networks, however, a few 

basic concepts must be reviewed.   First, in social networks nodes represent people and 

arcs represent a relationship between two people.  An arc connecting two nodes is called 

a “dyad” (Wasserman and Faust, 1994: 18).  In the Greek language, dyad means two, 

while in sociology, dyad refers to a pairing.  For a network containing directed arcs (see 

Figure 2-5) dyads can take on three possible states: null, mutual, and asymmetric (Monge 
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and Noshir, 2003: 117).  The null state is when there is no arc connecting the pair of 

nodes.  The mutual state is when two nodes have arcs pointing to each other.  The 

asymmetric state is when one node has an arc pointing to another node, but there is no arc 

from the receiving node back to the originating node.  In dealing with a social network 

containing undirected arcs (see Figure 2-6) there are only two possible states for the 

dyads: null and mutual.   

 

 
Figure 2-5: Three States of Directed Arcs 

 

 

 
Figure 2-6: Two States of Undirected Arcs 

 

 When studying dyads, an N x N matrix is used to track links between nodes.   

This is called an “adjacency matrix”, as it shows which nodes are connected (adjacent) to 

each other through the presence of dyads.  The elements of an adjacency matrix are one if 

a dyad exists and zero otherwise.  In the case of undirected arcs, the matrix will be 

symmetric with zeros down the diagonal, as ties are reciprocated between nodes and a 

node cannot have a tie to itself in a social network.   

Null State Asymmetric State Mutual State 

Null State Mutual State 
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 Similar to an adjacency matrix is a “sociomatrix” which represents dyads 

presence where some kind of binary attribute is tested.  For example, say that people at a 

sports bar are broken up into two subgroups based on gender.  Next, focusing on just the 

female subgroup, an N x N matrix is constructed of the dyads present due to friendships.  

Again, the elements of this matrix are one when a dyad exists and zero otherwise.  This N 

x N matrix is a sociomatrix of female friends at the sports bar.  In essence, sociomatrices 

employ the probabilistic operation of conditioning on an adjacency matrix to test for 

dyads found due to a specific binary trait.  Like adjacency matrices, the sociomatrices are 

symmetric with zeros down the diagonal due to reciprocated arcs and the inability for a 

node to have an arc to itself.   

 By calculating the row sums for both adjacency matrices and sociomatrices, the 

total number of arcs out of each node can be found (Fienberg, Meyer, and Wasserman, 

1985: 52).  Similarly, the column sums yield the total number of arcs into each node 

(Fienberg, Meyer, and Wasserman, 1985: 52).   

2.3.1. p1 Model 

 Statistical modeling of social networks yields the ability to test hypotheses about 

both specific links and linked groups of people contained in the network (Wasserman and 

Faust, 1994: 606).  Statistical tests are conducted by testing an existing hypothesis (often 

called a “null”) compared to an alternative hypothesis.  In order to test the statistical 

significance of a dyad, Paul Holland and Samuel Leinhardt developed the “p1” model 

(Holland and Leinhardt, 1981: 33).  Originally presented at the “Advanced Research 



2-14  

Symposium on Stochastic Process – Models of Social Structure” in 1977, a paper 

detailing their model was published in 1981 (Holland and Leinhardt, 1981: 33).   

 The p1 model makes use of an adjacency matrix to calculate the number of “in-

degrees” and “out-degrees” of each node.  In-degrees and out-degrees are each node’s 

corresponding column sum (arcs in) and row sum (arcs out), respectively (Holland and 

Leinhardt, 1981: 35).  Next, the total number of arcs for each node is found by adding the 

in-degrees and out-degrees together (Holland and Leinhardt, 1981: 35).  Finally, the total 

number of arcs in the network is found by summing the total arcs for each node and 

dividing by two (Holland and Leinhardt, 1981: 35).  The in-degrees, out-degrees, and 

total number of arcs are used in the construction of the p1 model, but other parameters are 

also added, allowing the desired network probability distribution to be included (Holland 

and Leinhardt, 1981: 37).  Including in-degrees and out-degrees takes into account how 

connected each node is (Fienberg, Meyer, and Wasserman, 1985: 54).  To complete the 

p1 model, it is divided by a scaling factor to normalize the total probabilities of the model 

and ensure that they sum to one (Holland and Leinhardt, 1981: 36).   

 In developing the p1 model, Holland and Leinhardt successfully found a way to 

test dyadic ties for probability of existence.  Unfortunately, the p1 model was limited to 

only being able to test one dyad.  In addition, while the scaling factor can be calculated 

for smaller networks, as networks grow, so does the difficulty of determining the 

normalizing constant.  The difficulty of calculating the scaling factor was a primary 

motivation of a majority of research aimed at improving the p1 model.   



2-15  

2.3.2. Markov Graphs 

 Building on the p1 model, Frank and Strauss developed a way to probabilistically 

model arcs between nodes using Markov Graphs (Frank and Strauss, 1986: 832).  The 

Markov property, incorporated into their graphs, is that when transitioning between 

states, only the current state influences what the next state will be (Kulkarni, 1995: 16).  

Making use of this property, Markov graphs model dyads whose existence only depends 

on the originating node (Frank and Strauss, 1986: 832).  In the case of undirected arcs, 

this means that Prob(i → j | i) = Prob(j → i | j). 

 To simplify their model, Frank and Strauss assumed that all arcs are equally 

probable (Frank and Strauss, 1986: 836).  Like the p1 model, the Markov graph model 

uses adjacency matrices to calculate the probability of the existence of most likely or 

least likely dyads or subgraphs (Frank and Strauss, 1986: 841).   

 Because of the ability to statistically test the probability of subgraph existence, the 

Markov graph model was the next step in the development of statistical network models.  

In fact, through setting certain parameters equal to zero, the Markov graph model 

simplifies down to the p1 model from which it was developed (Frank and Strauss, 1986: 

836).  A drawback of the Markov graph model is that it does not factor in the arc weights 

of the dyads, resulting in equal probability for all dyads.  This means that all arcs have 

the same probability of existence, regardless of the likelihood of arc existence.   

2.3.3. Markov Chain Monte Carlo 

 Further investigation of the Markov property reveals that it is present in a fair 

amount of statistical models through the implementation of Markov Chain Monte Carlo 
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(MCMC).  Many models require division by a normalizing factor to ensure that all the 

probabilities sum to one.  This normalizing factor is often difficult to calculate.  MCMC 

permits this process by generating an estimate which is used as the scaling factor, thus 

eliminating the need for arduous calculation of the actual scaling factor (Gilks, 1996: 3).   

 The total probability of an event occurring is simply the desired outcome(s) 

divided by the total number of possible outcomes.  In the discrete case, the total number 

of outcomes can be enumerated.  Unfortunately, total enumeration is not an option for the 

continuous case.  In order to calculate the total number of outcomes, integration must be 

employed to “enumerate” all the possible outcomes.  Both forms of enumeration 

essentially yield the expected value (Gilks, 1996: 3).  Unfortunately, there are many 

instances where integration yields a value of infinity, which is not useful to the analyst.  

This is where Monte Carlo random number drawing comes into play.   

 Since Monte Carlo methods draw random numbers in order to estimate a finite 

number of outcomes, Monte Carlo integration is simply the average of all the outcomes 

(Gilks, 1996: 4).  According to the law of large numbers, if enough sample observations 

are obtained, the average generated by those samples should approximate the average of 

the total population (Wackerly, Mendenhall, and Scheaffer, 2002: 423).  This applies 

even if the population is infinite.  Therefore, the expected value yielded by the Monte 

Carlo integration can be used as the normalizing constant.   

 The issue that arises from using Monte Carlo integration is the need for stable 

observations.  Since the outcome space is infinite, the outcomes observed can vary 

drastically.  This is where another aspect of the Markov property comes into play.  The 

presence of the Markov property ensures that a steady-state exists for the system 
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(Kulkarni, 1995: 107).  Finding the steady-state of the Markov Chain yields the 

observations used for Monte Carlo integration to calculate the final normalizing constant.   

 To find the normalizing constant, the Metropolis-Hastings algorithm is often 

employed (Gilks, 1996: 7).  This algorithm generates the Markov chain and finds the 

steady-state distribution values used for Monte Carlo integration.  Gibbs sampling is an 

application of the Metropolis-Hastings algorithm where Markov chain transitions are 

calculated purely through conditioning (Gilks, 1996: 7).  Due to the application of purely 

conditional transitioning, Gibbs sampling is incorporated into many of the MCMC 

techniques currently in use (Gilks, 1996: 7).   

 While MCMC techniques eliminate the need to explicitly calculate the actual 

normalizing constant, calculations are still required to find the estimated normalizing 

constant.  While the estimation of the normalizing constant is much simpler than explicit 

calculation, eliminating the need to even find a normalizing constant would be simpler 

yet.   

2.3.4. Stochastic and p1 Blockmodels 

 In an effort to deconstruct adjacency matrices, Stochastic Blockmodels make use 

of “blocks” to subgroup dyads due to binary attributes (Wang and Wong, 1987: 9).  The 

blocks count the number of dyads present in the subgroup and calculate a statistic 

representing the possibility of falling into that block.  This statistic is simply the number 

of dyads in the block divided by the total possible number of dyads (Wang and Wong, 

1987: 9).  Similar to the hypothesis test proposed by this study, the blocks can be viewed 

as “partitions” of the adjacency matrix.   
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 Using the p1 model on the blocks of the adjacency matrix yields the “p1 

blockmodel” (Wang and Wong, 1987: 11).  p1 blockmodels have the ability to 

conditionally test dyads based upon the binary attributes of the blocks, factoring in the 

block probability statistics.  The drawback is that the block breakdown can possibly skew 

the statistical results depending on how the dyads are sorted (Wang and Wong, 1987: 11).  

The methodology proposed herein seeks to counter this problem of skewing statistical 

results while maintaining the ability to conditionally test dyads based on partition 

assignment.   

2.3.5. p* and Logit p* Models 

 Combining the p1 and Markov Random Graph models, the p* model is not limited 

to just a single dyad (Wasserman and Pattison, 1996: 406).  In fact, the p* model is able 

to test the probability of the existence of any subgraph, even if the “subgraph” includes 

the entire network.  Where the p1 model could be generalized to a subgraph pertaining to 

two nodes (p2 model), the p* model is applicable to the entire network if necessary.   

 The p* model necessitates the modification of a sociomatrix into three 

sociomatrices based upon a specific binary trait (Wasserman and Pattison, 1996: 406): 

1) The sociomatrix of all the dyads present due to that binary trait 

2) The sociomatrix of all the dyads not present due to that binary trait 

3) The “compliment” of the initial sociomatrix 

Using these three sociomatrices, the p* model is calculated like the p1 model, which still 

requires the computation of a scaling factor (Wasserman and Pattison, 1996: 406).   
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 Due to the difficulty of computing the p* model’s scaling factor, the “logit p* 

model” was developed in order to eliminate the need to calculate any scaling factors 

(Anderson, Wasserman, and Crouch, 2002: 46).  This was done through the employment 

of the “odds ratio”.  The odds ratio is simply the chance or “odds” of the event(s) 

happening divided by the chance or “odds” of the event(s) not happening (Montgomery, 

Peck, and Vining, 2001: 446).  In the case of the p* model, the odds ratio is calculated 

based upon the binary conditioning trait (Wasserman and Pattison, 1996: 407).  Taking 

the (natural) log of the odds ratio is called the “logit” (Wasserman and Pattison, 1996: 

407) and makes the odds ratio easier to manipulate mathematically.  To this end, the log 

of the odds ratio of the p* model is taken, resulting in the logit p* model (Wasserman and 

Pattison, 1996: 407).  Without the need for a scaling factor, the logit p* model uses 

binary traits to test the probability of the existence of subgraphs (Anderson, Wasserman, 

and Crouch, 2002: 48).   

2.4. Clustering Techniques 

 The goal of clustering is to group data in such a way that data points containing 

similar traits are gathered together.  In the field of SNA, the data points studied are the 

network nodes where the clusters, often referred to as subgroups, depend on the traits and 

positions of these nodes.  There are a myriad of clustering techniques available when 

creating subgroups.  While each technique operates differently, they all make use of some 

kind of algorithm to group the data points, where the rules of the algorithm determine 

how the clusters are built.  An overview of these techniques is now be presented.   
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 At the top level, clustering techniques can be broken down into two broad 

categories: hierarchical clustering and partitioning (Dillon, 1984: 167).  The major 

difference between these two categories is how they treat data points when incorporated 

into clusters.  With hierarchical clustering, once a data point is incorporated into one of 

the major clusters, it stays in that cluster, regardless of whether it might fit better in 

another cluster formed at a later time (Dillon, 1984: 168).  Partitioning allows data points 

to change clusters, if doing so will yield a better set of overall clusters (Dillon, 1984: 

186).   

2.4.1. Hierarchical Clustering 

 The two most basic types of hierarchical techniques are agglomeration and 

division (Manly, 2005: 125).  Agglomeration starts by considering every data point to be 

an individual cluster (Jain, 1999: 274).  Next, a measurement is computed to find which 

data points are close together based on a user specified tolerance.  Generally, this 

measurement is the Euclidean distance between points (Manly, 2005: 130).  Once the 

points that are close together are determined, they are grouped into a new cluster.  Again, 

the distance from the single points to the new clusters are computed.  Single points found 

to be close to the centroid of existing clusters are assimilated into those clusters.  This is 

done until all the points are included in a cluster.  If two clusters are found to be close 

enough to each other to satisfy the set tolerance, those two clusters are combined into a 

single cluster (Manly, 2005: 127).   

 The hierarchical technique of division works in the exact opposite way as 

agglomeration.  The divisive technique starts with all the data points together in one large 
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cluster that is then broken down into smaller clusters (Jain, 1999: 274).  First, the centroid 

of the cluster is found.  Next, the location of each data point is measured against this 

average.  Again, Euclidean distance is useful in computing the location of the data point 

versus the average for the cluster (Manly, 2005: 130).  Data points that are found to have 

a distance larger than a set tolerance are split off into a new cluster.  This divisive process 

is then applied to the new clusters.  Once the existing clusters all fall within the set 

tolerance, the clusters of the divisive technique are set (Manly, 2005: 128).   

 There are a several drawbacks to these techniques.  One is that they require 

measuring the distance between data points.  While Euclidean distance is often the 

simplest method, other methods exist which can be utilized (Manly, 2005: 62).  

Regardless of the distance method chosen, enough must be known about the data that a 

suitable method can be used with a specified tolerance.  This requires prior knowledge of 

the data in order to specify both clustering and distance methods, and is a general 

shortcoming which arises when nonparametric distance-based methods are used.   

 Another drawback is that they exclude a data point once a decision is made about 

it.  For instance, in the agglomeration method, once a data point is included in a cluster, it 

cannot be removed from that cluster and, therefore, is not allowed to be moved to another 

cluster.  Even if it is evident that it does not belong to the cluster it is located in, it stays 

there.  The same is true for the divisive method.  Once a cluster is split, the points 

contained in the new cluster are not considered again.  Even if after creating more 

clusters, a data point should be included in a new or different cluster, it stays in the 

cluster to which it was originally assigned.  The issue of switching clusters is allowed 

through the practice of partitioning, which will be covered later.  The benefit of 
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hierarchical clustering is that once the data point is assigned to a cluster, it is no longer 

included in future assignment calculations.  This results in hierarchical methods generally 

being faster than partitioning methods.   

2.4.2. Monothetic and Polythetic Clustering 

 Another form of clustering is to break data points down due to a binary trait.  This 

is called monothetic clustering (Jain, 1999: 274).  With binary traits, a data point either 

has the desired element, or does not.  Based on this binary trait, the data points are 

clustered into two categories.  These clusters need not be geographically located near 

each other as in the agglomeration and division methods.   

 Polythetic clustering is an extension of the monothetic clustering technique where 

more than one binary attribute is taken into account (Jain, 1999: 274).  When using the 

polythetic clustering method, the initial clustering of the data is done the same way as 

monothetic clustering.  With the data points divided into two clusters, all the data points 

are tested for another binary attribute.  Based upon the attribute, each of the existing 

clusters is broken down into two more clusters, resulting in a total of four clusters.  This 

breakdown of all the clusters continues for every binary attribute.   

 The use of the polythetic clustering technique results in the number of clusters 

growing quickly; for k binary attributes, 2k clusters are created (Jain, 1999: 274).  Using 

polythetic clustering to test for k = 1 binary attribute is the same as monothetic clustering.  

This is evident, as 21 = 2 clusters, the same number found using monothetic clustering.  

While the polythetic method rapidly creates clusters of the data, the side effect is that the 
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number of clusters quickly becomes unruly.  Testing for too many traits can easily result 

in too many clusters, making analysis difficult.   

2.4.3. Hard vs. Fuzzy Clustering 

 Agglomerative, divisive, monothetic, and polythetic clustering techniques are all 

examples of clustering that is categorized as being “hard”.  Hard clustering is any 

technique that only allows data points to be part of one cluster (Jain, 1999: 274).  

Partitioning also shares this trait of only allowing each data point to be included in one 

cluster.  In order to allow data points to be included in more than one cluster, the method 

of “fuzzy” clustering must be employed.   

 To allow inclusion in multiple clusters, each data point is given a probability of 

being contained in each cluster (Jain, 1999: 281).  Like all probabilities, these values lie 

in the range of [0, 1].  The closer to one the probability is the more chance of being 

included in that cluster (Jain, 1999: 281).  The closer to zero, the less chance the data 

point is included (Jain, 1999: 281).   

 Using this method, fuzzy clustering allows data points to be included in more than 

one cluster.  Provided there is more than one cluster, there exist data points that will not 

be included in all the clusters.  A data point not included in a cluster has a probability of 

zero.  This is represented in two different ways.  Clusters can explicitly state that the data 

point has no chance of being included in the cluster, or it can just be left out of the set 

(Jain, 1999: 281).  Both approaches have their benefits.   

 Explicitly listing the probabilities of all the data points allows them to be rank 

ordered based upon the probability values.  This ranking can be used to quickly identify 
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which data points belong at the center of the cluster, which ones belong in the outskirts of 

the cluster, and which ones do not belong in the cluster at all.  On the other hand, not 

listing the points outside the cluster will result in a shorter cluster list to study.  The 

benefit is a list where all the data points are rank ordered without the extraneous points 

cluttering up the list.  The downside is that to know which points are not included in the 

cluster requires the use of a master list containing all the data points.  Without this list, 

each cluster must be individually found on the lists of the other clusters.  Both approaches 

have their benefits and should be used depending on the analyst’s needs.   

2.4.4. Partitioning 

 A partition can be viewed as a dynamic cluster whose edges grow and shrink to 

find the optimal cluster grouping.  As mentioned previously, partitioning provides more 

flexibility than hierarchical clustering, allowing data points to switch clusters, while, with 

hierarchical clustering, once a cluster incorporates a data point, it is set as being part of 

that cluster.  If, due to some calculation, it is found that a data point does not fit the 

current partition, partitioning removes the data point from the current cluster and places it 

in another cluster.   

 One of the most widely used nonparametric distance based partitioning method is 

the k-means clustering technique.  The “k” in k-means is the total number of clusters 

desired (Dillon, 1984: 186).  The desired number of total clusters is specified at the start 

of executing the k-means partitioning method.  This can pose a problem, as it requires 

additional knowledge of the data prior to running the k-means algorithm.   
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 Once the value of k is determined, the data points are broken up into k partitions 

(Dillon, 1984: 186).  Next, the center of each partition is found.  With the center of each 

partition known, the distances of all the partition’s data points to the center are calculated 

for all the partitions.  Euclidean distance can once again be used, as in the agglomerative 

and divisive techniques (Dillon, 1984: 186).  Next, the mean partition distance is 

calculated by taking the arithmetic mean of the total distance of all the data points from 

the center (Dillon, 1984: 186).   

 With these means calculated, an error term for each partition is created using the 

squared-error method (Dillon, 1984: 187).  The squared-error method calculates the error 

of each partition for all the data points in that partition using the following formula: 

 

( )2

1
partition mean  partition location of node i

k

i=
−∑  

 

Once each partition’s error term is found, these terms are summed into one overall error 

term (Dillon, 1984: 187).   

 The goal of k-means partitioning is to minimize the overall error term (OET).  

This is done using an iterative technique to move data points from one cluster to another 

(Jain, 1999: 279).  Upon moving data points to another partition, the OET is recalculated.  

If it shrinks, the partition change was beneficial and is kept.  If it grows, the partition 

change was negative and the algorithm reverts to the previous partition set.  At the start 

of this process, a desired OET tolerance decrease must be specified.  Each iteration’s 

OET is compared to the OET of the prior partition set.  If the OET does not improve 
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enough to satisfy the threshold of the specified tolerance, the current partition pattern is 

accepted as the optimal set of clusters.   

 Just like with k-means clustering, many other partitioning techniques also require 

the total number of clusters to be specified before running the algorithm.  This is the 

major weakness of nonparametric distance-based partitioning methods.  Often times, a 

partitioning technique is run multiple times on the same data set where a different number 

of total clusters are specified for each run (Jain, 1999: 278).  It is then up to the analyst to 

determine which specified number of clusters is the preferred choice for the data being 

studied.   

 Clustering has a direct application to social networks, using network nodes as the 

data points for the clusters.  A few ways to form network clusters are by focusing on 

nodal attributes, network location, or similar ties to other nodes.  Creating network 

clusters could help to identify groups and organizations embedded in an observed 

network, and also provide a way to quickly categorize a newly observed member of the 

network.  Through the use of clustering, the leadership of an organization can be isolated 

for study.  Once these individuals are pinpointed, the effects of removing them from the 

network can be explored, perhaps resulting in the identification of the network’s future 

leaders.   

 Since most people usually belong to more than one social group, network clusters 

must allow nodes to belong to more than one cluster.  This means that network clustering 

should make better use of fuzzy methods than hard methods.  Use of fuzzy methods 

ensures a dynamic network model where individuals have the potential to be members of 

all the clusters.  Such a model will allow for changing alliances, friendships, and making 
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new connections.  Keeping these aspects in mind, clustering techniques have great 

potential when applied to SNA.   

2.5.  Summary 

 A great deal of work has taken place in the field of social network analysis.  

While much of it has been conducted solely for application to social networks, some tools 

and methods have been taken from other disciplines.   Regardless of origin, the main goal 

was to gain greater insight into the formation and interactions taking place within a social 

network.  With the knowledge of the development existing tools and their application, 

this research proposes a new methodology with which to investigate non-random 

structure in social networks based on a hypothesis testing framework.  The main goal of 

this effort is a tool for use by the Department of Defense community.   
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3. Methodology 

3.1. Introduction 

 This chapter details the methodology of developing a hypothesis test capable of 

investigating a social network for non-random structure.  The methodology developed 

herein partitions the observed network based on the social attributes of the nodes, 

providing the ability to test each attribute partition to see if it explains the variability 

found in the adjacency matrix.  To this end, the first part of the chapter focuses on model 

development and is followed by examples showing the application of the model and 

corresponding hypothesis test.   

3.2. Variables 

 In order to develop the model used to conduct the hypothesis test, network 

variables must be specified to allow parameterization of a probability mass function.  

These variables are:  

  Number of Nodes Observed in the Networkn ≡  

  Total Possible Ways Dyads Can Form in the Observed NetworkN ≡  

  Number of Nodes Observed in Level hn h≡  

  Total Possible Ways Dyads Can Form in Level hN h≡  

  Number of Nodes Observed in Level  or Level ijn i j≡  

  Total Possible Ways Dyads Can Form from Level  to Level ijN i j≡  

  Number of Observed Dyads in the Networkd ≡  
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  Number of Observed Dyads in Level hd h≡  

  Number of Observed Dyads from Level  to Level ijd i j≡  

  Probability of an Arc Existing Between any Two Nodes 
         Contained in Level 

hp
h

≡  

 
 Probability of an Arc Existing Between a Node in Level  

         and a Node in Level 
ijp i

j

≡
 

 0  Probability of an Arc Existing Between any two Nodes 
         in the Observed Network
p ≡  

 ( ) Exhaustive  Level Partitionz k k≡  

3.3. Model Development 

 Using the network variables, a probability mass function (PMF) can be 

constructed capable of assigning a probability to dyad existence conditional on the k level 

partition.  That is, the binomial distribution is parameterized in terms of the k level 

network partition as follows:  

 

( )( )
1

1 1 1

| ,  (1 ) (1 )ij ij ijh h h

k k k
ij d N dh d N d

h h ij ij
h i j ih ij

NN
f z k p p p p

d d

−
−−

= = = +

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∏ ∏∏d p  (3.1) 

 

Both ph and pij are in the interval [0, 1].  In addition, dh ∈  {0, 1, …, Nh} and dij ∈  {0, 1, 

…, Nij} where Nh = (½)(nh)(nh – 1) and Nij = (½)(nij)(nij – 1) – Ni – Nj.  With the variables 

dh, dij, Nh, and Nij calculated, they can be used to find d and N: 
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 Notice that the PMF in (3.1) is constructed by assuming conditional independence 

based on the exhaustive k level partition.  Letting Dh and Dij denote the events of 

observing dh dyads in level h and dij dyads from level i to level j, respectively, the initial 

conditioning is  
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and by the conditional independence assumption, (3.4) can be written as  
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 The PMF in (3.1) is defined to all partition levels k ∈  {1, 2, …, n}.  The upper 

and lower bounds of k present two special cases for the PMF.  At k = 1, (3.1) becomes: 
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In (3.6), there is no partition and, as such, only one parameter is required.   

 At k = n, (3.1) becomes: 
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Using (3.7), each network node is placed in its own level.  Since n levels are present, the 

number of parameters needed is (½)(n)(n – 1).   

 While (3.6) presents a case where no dyads occur between levels, (3.7) presents a 

case where no dyads occur within a level.  In order to explore dyad formation both within 

and across levels, meaning that at least two nodes are assigned to each level, bounds must 

be placed on k such that  

2
2
nk ⎢ ⎥≤ ≤ ⎢ ⎥⎣ ⎦

     (3.8) 

 

where ⎢ ⎥⎣ ⎦  denotes the floor function.  While the bounds of (3.8) are necessary, they are 

not sufficient for ensuring that every partition has at least two nodes because it is still 

possible for partitions with only one node within a level to exist.  In the cases where each 

partition contains at least two nodes, the number of parameters required for k levels is  

 

1 or  ( 1)
2 2
k

k k k⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

    (3.9) 
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Further, the total number of ways to partition the observed network into u levels resulting 

in all u levels having at least two nodes is 

 

;    2,3,...,2
2

n
nu

u

⎛ ⎞⎢ ⎥
⎡ ⎤⎜ ⎟⎢ ⎥ =⎣ ⎦ ⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟

⎝ ⎠

    (3.10) 

 

where ⎡ ⎤⎢ ⎥  denotes the ceiling function.  In (3.10), n remains the total number of 

observed nodes and u is the level of the partition under consideration.  This provides the 

analyst with a count of the total number of possible partitions resulting in at least two 

nodes per level.  To illustrate the use of (3.10), consider a k = 3 level partition applied to 

a network of n = 20 nodes.  There are 120 unique partitions such that each level contains 

at least two nodes.   

 Since parameters ph and pij (h = 1, 2, …, k; i < j = 2, 3, …, k) are not known, they 

must be estimated from the observed adjacency matrix.  The likelihood function 

proportional to (3.1) is:  

 

( )( )
1

1 1 1

| ,  (1 ) (1 )ij ij ijh h h

k k k
d N dd N d

h h ij ij
h i j i

L z k p p p p
−

−−

= = = +

= − −∏ ∏∏p d   (3.11) 

 

The natural log of the likelihood function is preferred over the likelihood function due to 

ease of manipulation.  As such, the natural log of (3.11) is:   
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( )( ) ( ) ( )

( ) ( )
1

1

1 1

| , log log(1 )

                     log log(1 )

k

h h h h h
h

k k

ij ij ij ij ij
i j i

l z k d p N d p

d p N d p

=

−

= = +

= + − −⎡ ⎤⎣ ⎦

⎡ ⎤+ + − −⎣ ⎦

∑

∑ ∑

p d
  (3.12) 

 

With the log-likelihood function specified, the maximum likelihood estimates for ph and 

pij (h = 1, 2, …, k; i < j = 2, 3, …, k) can be shown to be (Casella and Berger, 2002: 316): 

 

l

l

h
h

h

ij
ij

ij

dp
N
d

p
N

=

=
     (3.13) 

 

(An explicit demonstration of these estimates for the k = 3 level partition is shown in 

Appendix A.)   

 Since the estimates yielded by (3.13) are maximum likelihood estimates (MLEs), 

their asymptotic properties can be exploited to estimate an approximate 100(1 – α)% 

confidence interval (CI) for each estimated parameter.  The benefit of such a calculation 

is that it provides a method for analysts to gauge the quality of variable estimation.  Small 

CIs indicate better quality of estimation while large CIs indicate lower quality of 

estimation.  Confidence bounds provide lower and upper limits for the CI, yielding a 

range for l hp  and l ijp .   
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 It is well known that a MLE of θ, say �θ , is asymptotically distributed as 

approximately multivariate normal with �E θ θ⎡ ⎤ =⎣ ⎦  and � ( ) 1
Var θ θ

−⎡ ⎤ = ⎡ ⎤⎣ ⎦⎣ ⎦ I  where I(θ) is 

the Fisher information matrix with element Ip,q given by 

 

( ) ( )
,

| |
E  p q

p q

dl dl
I

d d
θ θ

θ θ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

x x
i    (3.14) 

 

Here, l denotes the log-likelihood function and the expectation is taken over the random 

variables x.  For any unbiased estimator, the diagonal elements of the inverse of I(θ) are 

then the Cramer-Rao lower bounds of the variance of the parameter estimates.  Thus, 

since MLEs are asymptotically unbiased, ( ) 1θ −I  can be viewed as the asymptotic 

variance-covariance matrix of the estimator �θ .   

 Under the assumed model in (3.1), the asymptotic variance-covariance matrix of 

1 2 1 1,2 1, 1,ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , ,k k k k kp p p p p p p− −⎡ ⎤= ⎣ ⎦p … … … , denoted by ( )ˆVar p , is then given by 
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(3.15) 

 

Thus, the asymptotic distribution of �p  is approximately multivariate normal with mean 

vector p and variance-covariance matrix ( )ˆVar p .  Note that since ( )ˆVar p  is a diagonal 

matrix, this suggests that the covariances between the parameter estimates are zero for 

any given partition z(k) of the observed network.   

 Using the likelihood function of (3.11), a hypothesis test can be derived for 

testing the parameters ph and pij (h = 1, 2, …, k; i < j = 2, 3, …, k) for equality.  While the 

null hypothesis proposes all parameters are equal, the alternative hypothesis proposes that 

at least one parameter differs.  That is, 

 

0 1 2 3 1,2 1,3 1, 2, 1, 0

0 0

: ... ... ...

:  for at least one  or ,  ( )

k k k k k

A h ij

H p p p p p p p p p p

H p p p p h i j i j

−= = = = = = = = = = = =

≠ ∪ ≠ <
 (3.16) 
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The alternative hypothesis of (3.16) can be specified simply or as a composite.  The form 

used is at the discretion of the analyst seeking to explore the variability of the observed 

adjacency matrix.  Through the use of the proposed hypothesis test, adjacency matrix 

variability can be explored in a quantifiable way to determine which attribute partitions 

best provide insight into these observations.   

 Under the null hypothesis, the likelihood function is not conditioned on the 

partition and takes on the form 

 

( )( ) ( ) ( )0 0 0 0 0 0| , 1 | 1 N ddL d p z L d p p p −= = −    (3.17) 

 

proposing that network partitions do not explain the variability in the observed adjacency 

matrix.  In fact, (3.17) implies that chance better explains observed variability rather than 

any of the partitions.  For this reason, z(1) is eliminated from the likelihood function, as 

(3.11) reduces to (3.17) under the null hypothesis.  (Proof of this reduction for the k = 3 

level partition is shown in Appendix A.)  As with the other probability parameters, p0 is 

contained in the interval [0, 1] and d and N are defined by (3.2) and  (3.3), respectively.   

 The hypothesis test is carried out through the creation of a likelihood ratio 

statistic, denoted R, and is simply the likelihood function specified under the alternative 

hypothesis divided by the likelihood function specified under the null hypothesis.  In 

equation form it is: 
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( )( ) ( )
( ) ( )

1

1 1 11

0 0 0 0

(1 ) (1 )
| , ( )

, |
| 1

ij ij ijh h h

k k k
d N dd N d

h h ij ij
h i j i

N dd

p p p p
L z k

R d z k
L d p p p

−
−−

= = = +
−

− −
= =

−

∏ ∏∏d p
p  (3.18) 

 

and is quite similar to the odds ratio discussed in section 2.3.5.  In essence, it is the 

“odds” that the network formed based upon the partition structure versus forming 

completely at random.   

 Working with the natural log of R produces the log-likelihood ratio statistic which 

is easier to manipulate mathematically.  Doing so changes (3.18) to  

 

( )( ) ( )( )( )
( ) ( )

( ) ( )

( ) ( ) ( )

1
1

1 1

0 0

, | log , |

                    log log(1 )

                    log log(1 )

                    log log 1 ,

k

h h h h h
h
k k

ij ij ij ij ij
i j i

r d z k R d z k

d p N d p

d p N d p

d p N d p

=

−

= = +

=

= + − −⎡ ⎤⎣ ⎦

⎡ ⎤+ + − −⎣ ⎦

− + − −⎡ ⎤⎣ ⎦

∑

∑ ∑

p p

  (3.19) 

 

where small values of r suggest that the network attribute partition does not significantly 

explain the variability in the observed adjacency matrix relative to what can be explained 

by chance.  Conversely, large values of r indicate that the network attribute partition does 

significantly explain the variability in the observed adjacency matrix relative to what can 

be explained by chance.   

 Unfortunately, the true partition probabilities are not known.  This was the reason 

that partition MLEs were found using (3.13).  With these parameters estimated, the only 
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parameter left to estimate is p0.  Similar to (3.13), it can be shown that the value of p0 that 

maximizes (3.19) is given by 

 

l
0

dp
N

=      (3.20)  

 

Plugging all the parameter MLEs into (3.19) produces: 
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p

  (3.21) 

 

As calculated by (3.21), r�  is the test statistic used to explore observed adjacency matrix 

variability.  Small values of r�  suggest that the network partition does not significantly 

explain the variability in the observed adjacency matrix relative to what can be explained 

by chance and large values of r�  indicate that the network attribute partition does 

significantly explain the variability in the observed adjacency matrix relative to what can 

be explained by chance.   

 Now that the test statistic has been derived, a tractable method for quantifying the 

significance level of the test must be developed.  Since the proposition of the null 

hypothesis is that no structure is present in the observed adjacency matrix and that 

network formation is totally random, Monte Carlo simulation is used for the generation of 
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random networks to compare to the observed network.  The random networks have the 

same number of nodes as the observed network, but the number of dyads is a random 

variable.  Dyads form with a probability of l 0p  and fail to form with a probability of        

1 – l 0p .   

 As in most statistical tests, computing the “attained significance level” is 

necessary for deciding whether or not the null hypothesis stands as stated or is rejected in 

favor of the alternative hypothesis.  The statistic numerically representing the attained 

significance level is the p-value (Wackerly, Mendenhall, and Scheaffer, 2002: 482).  

Smaller p-values imply higher statistical significance.  Conversely, larger p-values imply 

lower statistical significance, resulting in failure to reject the null hypothesis.   

 For s randomly generated networks, log-likelihood ratio statistics will be 

calculated and sorted in descending order where ri denotes the log-likelihood ratio 

statistic of the ith randomly generated network.  By comparison to the list corresponding 

to the randomly generated networks, the observed network’s log-likelihood ratio statistic 

is assigned the ranking robs.  In this way, the estimated p-value is obtained by 

  

( )ˆ -
1

obsrank r
p value

s
=

+
     (3.22) 

 

where rank(robs) denotes the rank assigned to the log-likelihood ratio statistic of the 

observed network as compared to the list of log-likelihood ratio statistics corresponding 

to the s randomly generated networks.  For example, if s = 4, robs = 13, r1 = 3, r2 = 5,      

r3 = 7, and r4 = 11, so rank(robs) = 1 and p̂ -value = .2.    
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 With the p̂ -value found, the attained significance level of the observed network’s 

log-likelihood ratio statistic is compared to α, the statistical significance threshold.  If  

p̂ -value ≤ α, the test statistic is determined to be statistically significant, thus resulting in 

rejection of the null hypothesis in favor of the alternative hypothesis.  If that is the case, 

the network partition being investigated does indeed explain the variability in the 

observed adjacency matrix.  The larger the value for s, the more significant the p̂ -value 

becomes.  For this research effort, s = 999 random networks are generated, which is a 

sufficiently large enough number to result in a quality p̂ -value estimation.   

 The results of this test are extremely beneficial as they allow network analysts to 

objectively characterize the partitions identified as statistically significant and aid in 

explaining adjacency matrix variability.  The network partitions identified as not 

statistically significant have little or no relativity in explaining the variability in the 

observed adjacency matrix.  Thus, those attributes that serve as a basis for the non-

significant partitions can be excluded from future consideration, focusing efforts on 

attributes with the most potential.   

3.4. Model and Methodology Assumptions 

 The model presented in section 3.3 can handle cases where k = 1, 2, …, n.  This 

research effort focuses on cases involving two to five attribute partition levels, where 

each level contains at least two nodes.   

 Full datasets are available upon which to base network partitions.  That is, all the 

nodal attributes from which the partitions are constructed are known.   
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 The network nodes are partitioned into mutually exclusive and collectively 

exhaustive subsets.  This means that for any given partition, a node can only be contained 

in one level at a time.  While different attributes exist, each attribute is focused on 

individually to create the partition.  For example, take the case of an attribute 

representing whether or not an individual is married.  The individual can either be 

married or single, but not both, and therefore is restricted to one of the two possible 

levels.  Should another attribute correspond to the same node, for instance level of 

education, another partition is constructed on the basis of “education level”.   

3.5. Model Demonstration  

 With the hypothesis testing framework now laid out, it will be applied to three 

different examples.  These examples will detail the methods and application of the 

hypothesis test used to detect, characterize, and estimate non-random structure in a 

network, making use of both simulated and real-world network data.   

3.5.1. k = 5 Level Partition 

 For the first example, a network with n = 25 nodes and a k = 5 level partition is 

constructed.  The level assignments are: Level 1 ≡ {1, 3, 5}, Level 2 ≡ {20, 21, 22, 23, 

24, 25}, Level 3 ≡ {15, 16, 17, 18, 19}, Level 4 ≡ {2, 4, 6, 7, 8, 9, 10}, and Level 5 ≡ 

{11, 12, 13, 14}.  According to (3.9), fifteen parameters must be estimated, denoted p1, 

p2, p3, p4, p5, p12, p13, p14, p15, p23, p24, p25, p34, p35, and p45.  The specified values of these 

parameters are p1 = .6667, p2 = .4667, p3 = .7, p4 = .2857, p5 = .3333, p14 = .5238,          

p23 = .3, p24 = .0476, p25 = .1667, p45 = .0714, and p12 = p13 = p15 = p34 = p35 = 0.  Given 

the true relationship structure corresponding to these specifications is shown in the 
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symmetric “dyad probability matrix” of Figure 3-1.  One realization of the adjacency 

matrix based on Figure 3-1 is shown in Figure 3-2 and visually represented in Figure 3-3.   

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 0 0.5238 0.6667 0.5238 0.6667 0.5238 0.5238 0.5238 0.5238 0.5238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0.5238 0.2857 0.5238 0.2857 0.2857 0.2857 0.2857 0.2857 0.0714 0.0714 0.0714 0.07 0 0 0 0 0 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476
3 0 0.5238 0.6667 0.5238 0.5238 0.5238 0.5238 0.5238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0.5238 0.2857 0.2857 0.2857 0.2857 0.2857 0.0714 0.0714 0.0714 0.07 0 0 0 0 0 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476
5 0 0.5238 0.5238 0.5238 0.5238 0.5238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0.2857 0.2857 0.2857 0.2857 0.0714 0.0714 0.0714 0.07 0 0 0 0 0 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476
7 0 0.2857 0.2857 0.2857 0.0714 0.0714 0.0714 0.07 0 0 0 0 0 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476
8 0 0.2857 0.2857 0.0714 0.0714 0.0714 0.07 0 0 0 0 0 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476
9 0 0.2857 0.0714 0.0714 0.0714 0.07 0 0 0 0 0 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476
10 0 0.0714 0.0714 0.0714 0.07 0 0 0 0 0 0.0476 0.0476 0.0476 0.0476 0.0476 0.0476
11 0 0.3333 0.3333 0.33 0 0 0 0 0 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
12 0 0.3333 0.33 0 0 0 0 0 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
13 0 0.33 0 0 0 0 0 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
14 0 0 0 0 0 0 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
15 0 0.7 0.7 0.7 0.7 0.3 0.3 0.3 0.3 0.3 0.3
16 0 0.7 0.7 0.7 0.3 0.3 0.3 0.3 0.3 0.3
17 0 0.7 0.7 0.3 0.3 0.3 0.3 0.3 0.3
18 0 0.7 0.3 0.3 0.3 0.3 0.3 0.3
19 0 0.3 0.3 0.3 0.3 0.3 0.3
20 0 0.4667 0.4667 0.4667 0.4667 0.4667
21 0 0.4667 0.4667 0.4667 0.4667
22 0 0.4667 0.4667 0.4667
23 0 0.4667 0.4667
24 0 0.4667
25 0  

Figure 3-1: True Network Relationship Structure 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Figure 3-2: Simulated Realization Based on Figure 3-1 
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Figure 3-3: Visual Representation of Simulated Realization in Figure 3-2 

 

 The PageRank Algorithm (PRA) used by Google is designed to objectively 

examine the nodes of a network for connectivity (Page and Brin, 2006: n. pag.).  In the 

application used by Google, the nodes of the network are webpages and the overall 

network is the internet.  When applied to dyad probability matrices, the PRA indicates 

which nodes belong to which groups and also gauges an individual node’s overall 

connectivity to all the other nodes in the network.  This is achieved through finding the 

steady-state of the dyad probability matrix and assigning a “PRA Score” to each node.  

The PRA Score is a measure of how connected a node is to the rest of the nodes in the 

network.  Nodes with similar connectivity are grouped together.  The results of applying 

the PRA to the dyad probability matrix of Figure 3-1 are shown in Table 3-1.   
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Table 3-1: PRA Results 

Score Node  

0.0927 11 Least Connected Nodes
0.0927 12  
0.0927 13  Level 5 
0.0927 14  
0.1209 9  
0.1209 10  Level 4 
0.1209 2  
0.1209 4  
0.1209 6  
0.1209 7  

0.1209 8  
0.1441 1  Level 1 
0.1441 3  

0.1441 5  
0.2557 20  Level 2 
0.2557 21  
0.2557 22  
0.2557 23  
0.2557 24  

0.2557 25  
0.2859 15  Level 3 
0.2859 16  
0.2859 17  
0.2859 18  

0.2859 19 Most Connected Nodes
 

 Table 3-1 indicates that the PRA accurately identifies the levels of the network 

based on the dyad probability matrix and identifies level three as the most connected 

level.  Referring to dyads contained within a level as “level dyads” and dyads occurring 

across levels as “cross-level dyads”, it is evident that level three contains a large number 

of level and cross-level dyads.  This, coupled with the high probability of dyad 
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occurrence (p3 = .7), makes level three the most connected level.  The PRA results also 

indicated that level five is the least connected level.  Compared to level three, the 

probability of dyad occurrence in level five is low (p5 = .3333) and level five has few 

level and cross-level dyads.   Despite the fact that level three only has cross-level dyads 

with level two while level five has cross-level dyads with both levels two and four, level 

three remains the most connected level due to high probability of dyad occurrence and a 

large number of total dyads.   

 The benefit to social network analysts is that PRA results provide a prioritized list 

of target nodes.  In this case, the most connected target set is level three while the least 

connected target set is level five.  Due to being a high value target, the members of level 

three might not be easy to attack.  If this is the situation, the PRA results also provide the 

next desirable target set, being level two.   

3.5.2. Building Confidence Intervals (CIs) 

 For an illustration of how to construct CIs, a network comprised of n = 20 nodes 

will be broken down into a k = 2 level partition based upon a single binary attribute.  

Level One ≡ {1 – 5, 11 – 15} and Level Two ≡ {6 – 10, 16 – 20}.  While this is a 

simplistic breakdown, it will fully illustrate the methods used to place bounds on 

parameter estimates.  The arbitrary partition probabilities assigned are p1 = .6, p2 = .9, 

and p12 = .15.  The symmetric dyad probability matrix corresponding to the specifications 

given for this example is illustrated by Figure 3-4.   
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 0.6 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15 0.6 0.6 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15
2 0 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15 0.6 0.6 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15
3 0 0.6 0.6 0.15 0.15 0.15 0.15 0.15 0.6 0.6 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15
4 0 0.6 0.15 0.15 0.15 0.15 0.15 0.6 0.6 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15
5 0 0.15 0.15 0.15 0.15 0.15 0.6 0.6 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15
6 0 0.9 0.9 0.9 0.9 0.15 0.15 0.15 0.15 0.15 0.9 0.9 0.9 0.9 0.9
7 0 0.9 0.9 0.9 0.15 0.15 0.15 0.15 0.15 0.9 0.9 0.9 0.9 0.9
8 0 0.9 0.9 0.15 0.15 0.15 0.15 0.15 0.9 0.9 0.9 0.9 0.9
9 0 0.9 0.15 0.15 0.15 0.15 0.15 0.9 0.9 0.9 0.9 0.9

10 0 0.15 0.15 0.15 0.15 0.15 0.9 0.9 0.9 0.9 0.9
11 0 0.6 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15
12 0 0.6 0.6 0.6 0.15 0.15 0.15 0.15 0.15
13 0 0.6 0.6 0.15 0.15 0.15 0.15 0.15
14 0 0.6 0.15 0.15 0.15 0.15 0.15
15 0 0.15 0.15 0.15 0.15 0.15
16 0 0.9 0.9 0.9 0.9
17 0 0.9 0.9 0.9
18 0 0.9 0.9
19 0 0.9
20 0  
Figure 3-4: Dyad Probability Matrix Corresponding to the Two Level Partition of 

the Twenty Node Example 
 

 To construct a 95% CI on each of the parameter estimates, one can make use of 

the asymptotic variances discussed in section 3.3.  With α = .05, finding the lower and 

upper bounds simply requires finding the value associated with points .025 and .975 on 

the normal curve corresponding to the mean and asymptotic variance of ˆ ip  (or ˆ ijp ) 

discussed earlier.  Table 3-2 summarizes the input values and the results of the 

calculations for each parameter estimate.   

 

Table 3-2: 95% CI for Twenty Node Example 

 1p̂  2p̂  12p̂  

Variable Estimate 0.6 0.9 0.15 
Nodes in Partition 10 10 20 

Asymptotic Variance 0.0053 0.0020 0.0013
95% Lower Bound 0.5895 0.8961 0.1475
95% Upper Bound 0.6105 0.9039 0.1525
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Notice that the asymptotic variance for 12p̂  is lower than the asymptotic variance for 

either 1p̂  or 2p̂ .  The lower asymptotic variance is the result of having more observations 

upon which to base the estimate.  Twice as many observations are available for the cross-

level estimate, thus resulting in improved parameter estimation.  In addition, notice that 

the asymptotic variance of 2p̂  is lower than the asymptotic variance of 1p̂ .  This is due to 

higher probability of dyads in level two.  In general, as Nh (or Nij) gets small, the 

asymptotic variance of ph (or pij) gets large, while the asymptotic variance of ˆhp  (or ˆ ijp ) 

is minimized at ˆhp  = 0 or 1.   

 Corresponding to the specifications of Table 3-2, a box plot is constructed and 

presented in Figure 3-5.  The benefit of a box plot is that it provides a visual tool upon 

which to evaluate the quality of parameter estimates.  If the CI is large, parameter 

estimation is poor, while, if the CI is small, parameter estimation is of higher quality.  For 

this reason, small CIs are desired.  Since box plots present CIs visually, the tighter the 

bands, the better the quality of the estimates.  In the case of Figure 3-5, 12p̂  is the best 

quality estimate as shown by the tight confidence interval, while 1p̂  is the lowest quality 

estimate as shown by the wider confidence interval.  It should be noted that at the 95% 

confidence level, all three estimates are of high quality.   
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Figure 3-5: 95% Confidence Interval for Probability Estimates of the Twenty Node 

Network Example 
 

3.5.3. Example Based on Real-World Data 

 The previous two examples were based on simulated data and only illustrate 

single partitions.  Using the open source, real-world data compiled by Marc Sageman on 

the Al Qaeda terrorist network (Sageman, 2006: n. pag.), multiple k = 2 level partitions 

will now be explored.  Focusing on the first one hundred nodes in the Sageman dataset, 

the attribute partitions of the “Friendship” network are tested to see if they significantly 

explain the variability in the observed adjacency matrix.  The dyads of the “Friendship” 

network represent observed friendships between network actors.     
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 As in the previous example, the nodal attributes were broken down in a binary 

fashion.  Despite this breakdown, what is presented here can be expanded to encompass 

the case of any k > 2 level partition.  Table 3-3 presents the sixteen binary attributes 

explored.  The methods presented in this thesis require a full dataset and, unfortunately, 

data was missing from the Sageman dataset.  For this research effort, nodes with missing 

attribute data were given a default value.  Table 3-4 details the assumptions required to 

populate missing data, generally assigning either the lowest level or most common 

attribute.  These assumptions were made to illustrate the example.  Exploring appropriate 

ways of dealing with missing data is suggested as an area of future research.   

 

Table 3-3: Binary Attributes 

Attribute Binary Breakdown 
Age Joined the Jihad 1 if Joined the Jihad at 25 or Older; 0 OW 

Clump 1 if in Arab Clump (Core or Maghreb); 0 OW 
Criminal Background 1 if Any Criminal Background; 0 OW 

Date of Birth 1 if Born Before 1970; 0 OW 
Fate 1 if Alive; 0 OW 
Kids 1 if Has Kids; 0 OW 

Level of Education 1 if Some College Education or Greater; 0 OW 
Married 1 if Married; 0 OW 

Occupation Type 1 if Professional or Semi-Prof Occupation; 0 OW 
Place Joined the Jihad 1 if Joined the Jihad in Native Country; 0 OW 
Religious Background 1 if Muslim Religious Background; 0 OW 

School Type 1 if Attended a Madrassa (Muslim School); 0 OW 
Socio-Economic Status 1 if Upper Class; 0 OW 

Type of Education 1 if Type of Educ is Scientific (Social / Tech / Natural); 0 OW
Year Joined the Jihad 1 if Joined the Jihad before 1995; 0 OW 
Youth National Status 1 if Youth National Status is "Native"; 0 OW 
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Table 3-4: Assumptions for Missing Data 

Attribute Assumption Made if Missing Data 
Age Joined the Jihad Younger than 25 

Clump Full Data Set 
Criminal Background No Criminal Background 

Date of Birth After 1970 
Fate Full Data Set 
Kids No Kids 

Level of Education No College 
Married Not Married 

Occupation Type Not Professional or Semi-Prof 
Place Joined the Jihad Native Country 
Religious Background Not Muslim 

School Type Madrassa (Muslim School) 
Socio-Economic Status Not Upper Class 

Type of Education Not Scientific 
Year Joined the Jihad After 1995 
Youth National Status Not Native 

 

 A “weighted dyad probability matrix” can be constructed using the statistically 

significant partitions.  In order to do this, the log-likelihood ratio statistics of the 

partitions explaining adjacency matrix variability must be normalized to find a weight for 

each partition where wi is the “relativity” weight corresponding to the ith partition.  That 

is,  
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�     (3.23) 

 

where i indicates the log-likelihood ratio statistic for the  ith partition and the summation 

is conducted over all the statistically significant partitions.  Since the sum of all wi are 

one and wi is in the range [0, 1], another way to compute ˆhp  is  
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( )ˆ ˆ |h m h m
m

p w p z=∑     (3.24) 

 

where the summation is conducted over all m statistically significant partitions.   

 With a “full” dataset at hand, the ability to find relativity weights, the attributes 

broken up in a binary fashion, and a statistical significance level threshold of α = .05, the 

Friendship network is ready for the hypothesis testing framework.  Table 3-5 details the 

results of the hypothesis tests. 

 

Table 3-5: Significant Partitions of the Friendship Network Hypothesis Tests 

Attribute p̂ -value r�  1p̂  2p̂  12p̂  Weight 
Age Joined 0.020 5.021 0.0108 0.0222 0.0085 0.0243 

Clump 0.001 39.3741 0.0333 0.0188 0.0000 0.1902 
Criminal Background 0.001 17.3311 0.0130 0.0553 0.0040 0.0837 

Date of Birth 0.006 6.3059 0.0145 0.0204 0.0068 0.0305 
Fate 0.006 6.6748 0.0301 0.0124 0.0075 0.0323 
Kids 0.002 7.9796 0.0158 0.0216 0.0059 0.0386 

Level of Ed 0.001 23.6071 0.0095 0.0238 0.0022 0.1141 
Occupation Type 0.001 24.9879 0.0101 0.0236 0.0018 0.1207 

Place Joined 0.001 9.8076 0.0160 0.0216 0.0035 0.0474 
School Type 0.001 8.6639 0.0138 0.0000 0.0000 0.0419 
Type of Ed 0.001 12.7106 0.0081 0.0293 0.0073 0.0614 
Year Joined 0.001 36.858 0.0317 0.0187 0.0004 0.1781 

Youth Nat'l Status 0.003 7.6422 0.0161 0.0170 0.0052 0.0369 
 

 From inspection of Table 3-5, it is evident that the “Clump” partition, detailing 

each individual’s assignment within Al Qaeda, has the largest log-likelihood ratio statistic 

(39.3741) with a relativity weight of .1902.  According to the estimated probability of 

friendship ties, there is no probability of members of either Arab clump being friends 
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with any of the members of the Southeast Asian or Central Staff clumps.  That is, 12p̂  = 

0.  It is estimated that a 3.3% chance exists for a friendship to form within the Arab 

clumps ( 1p̂  = .0333) and an estimated 1.9% chance of a friendship tie forming in the 

Southeast Asian or Central Staff clumps ( 2p̂  = .0188).  This shows a large divide in the 

clump partition of the Friendship network.  Clearly, friendships do not form between 

Arab clump individuals and those in the Southeast Asian or Central Staff clumps if the 

only factor is clump affiliation.  This is the sort of knowledge which may be extremely 

useful to social network analysts seeking ways in which to disrupt terrorist networks by 

eliminating individual nodes.  The 95% confidence intervals corresponding to the 

estimated clump parameters are presented in Figure 3-6.  With n1 = 36, n2 = 64, and      

n12 = 100, parameter estimation is of high quality.  As in section 3.5.2, the confidence 

intervals are again computed using the asymptotic variances.   
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Figure 3-6: 95% Confidence Interval Based on the Clump Partition 

 

 Table 3-5 provides a great deal of insight into the relationship structure of 

individuals in the friendship network.  While the Clump partition had the largest relativity 

weight, the “Year Joined” partition had the second largest relativity weight of .1781.  

This suggests that whether or not individuals joined the network before 1995 greatly 

explains with whom they are friends.  The third largest relativity weight is held by the 

“Occupation Type” partition (.1207), suggesting that individuals with similar occupations 

will likely be friends, a commonplace occurrence in any working environment.   

 The largest probability of dyad occurrence is located in the “Criminal 

Background” partition.  Partitioning the network based on whether or not an individual 

has a criminal background, an estimated 5.53% probability of dyad occurrence exists for 
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individuals with a criminal background to be friends.  Similar to the Clump partition, 

there is no estimated probability of dyads forming between levels in the “School Type” 

partition.  This suggests that individuals attending a Madrassa (Muslim school) are not 

likely to make friends with individuals attending either Christian or secular schools.  

With the known rift between Muslim and Christian fundamentals, this certainly makes 

intuitive sense.   

 Using the weights and dyad probability matrices of the significant partitions, an 

overall weighted dyad probability matrix can be constructed by  

  

( )ˆ Dyad Probability Matrix m
m

P w m=∑   (3.25) 

 

where the summation is conducted over all m statistically significant partitions.  P̂  is a 

100 x 100 matrix for this example and, due to size, is not displayed.  Despite this issue, 

the PRA is used to summarize P̂ .  Table 3-6 shows the results of this method.  Again, a 

rank ordered priority target list is produced.   
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Table 3-6: PRA Results for the Friendship Network 

PRA Score Node(s)  
0.074 94, 95, 96 Least Connected Nodes
0.076 52  
0.077 45, 55, 56, 69  
0.078 37, 71, 75, 77, 82, 88, 92, 93, 97  
0.079 20, 43, 46, 48, 70, 98  
0.080 47, 84, 87  
0.082 22, 34, 89  
0.083 9  
0.084 100  
0.088 99  
0.091 91  
0.092 7, 38, 58  
0.094 16, 19  
0.096 85  
0.099 51  
0.100 36  
0.101 44  
0.103 74, 78, 80, 81, 83  
0.104 54, 73  
0.105 28, 53, 59  
0.106 18, 23, 42, 64, 68  
0.107 5  
0.108 41, 62, 72, 76, 90  
0.109 50, 57, 86  
0.110 39, 40, 49, 60, 61, 67  
0.111 15, 65, 66, 79  
0.112 4, 63  
0.113 8, 24, 25, 29  
0.114 14, 26  
0.115 1  
0.116 3  
0.117 2, 6, 10, 11, 12, 13, 17, 21, 27, 30, 31, 32, 33, 35 Most Connected Nodes

 

 Node one corresponds to Osama bin Laden and node two corresponds to Ayman 

al-Zawahiri, bin Laden’s personal doctor.  The PRA list, based on the weighted dyad 

probability matrix constructed from the findings of the hypothesis test, shows that both 

men are highly ranked and nodes of interest.  According to the results, al-Zawahiri is the 

more valued node.  While neutralizing bin Laden may strike a major blow to al Qaeda,  
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al-Zawahiri has more inter-relations which may be useful in aiding in the capture of other 

operatives, possibly to include bin Laden.  By considering the assumption that higher 

ranked nodes might be more heavily protected, the PRA results provide a gauge of the 

“reachability” of nodes.  In this case “reachability” refers to the number of potential paths 

to the person of interest.   

 According to element [1, 2] of P̂ , representing the estimated probability of dyad 

occurrence between Osama bin Laden and Ayman al-Zawahiri, the dyad probability 

estimate is .0256.  This is the same value achieved by taking the weighted sum in (3.24) 

based on the results of Table 3-5.  While it is known that a tie exists between bin Laden 

and al-Zawahiri, the hypothesis testing framework suggests a .0256 estimated probability 

of dyad existence based upon network partitions.  Although this seems like a small 

probability, the largest weighted probability generated by P̂  is .026.  Clearly, the 

estimated weighted dyad probabilities of P̂ are small, but still provide a proxy     

strength-of-tie measure.  In light of this fact, the .0256 estimated probability of a tie 

between bin Laden and al-Zawahiri is one of the larger dyads estimated by P̂ .  Scaling 

the bin Laden / al-Zawahiri dyad is accomplished through division by the largest dyad 

probability and results in a 98.46% chance of dyad formation based on the results of P̂ .   

 The highest estimated dyad probabilities (.026) correspond to the links between 

each node of set {2, 10, 12, 17, 32, 33}.  Notice that all six nodes are identified by the 

PRA as being in the set containing the most connected nodes.  In addition, Ayman         

al-Zawahiri is a member of this group, once again giving credence to the possibility that 

he is more highly connected than Osama bin Laden.    
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3.6. Summary 

 This chapter laid out a hypothesis testing framework capable of examining an 

observed adjacency matrix for variability.  Three different examples were provided, 

showing the use and ability of the hypothesis test when applied to both simulated and 

real-world networks.  When using open source data for the Al Qaeda terrorist network, 

the hypothesis test identified the “Arab Clump” partition as best explaining the formation 

of friendship ties while identifying the “Married”, “Socio-Economic Status”, and 

“Religious Background” partitions as not explaining the formation of friendship ties.  

With insights like this yielded by the hypothesis testing framework, social network 

analysts are better able to analyze network members.  A potential benefit of this analysis 

is a reduction in the amount of data being explored by the social network analysts as the 

hypothesis testing framework causes the salient partitions to rise to the surface.  These 

results must be viewed in the light of the analysis being conducted.   
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4. Results and Analysis – Hypothesis Test Evaluation 

4.1. Introduction 

 As constructed, the hypothesis test evaluates observed networks to determine if 

attribute partitions are capable of explaining the variability in the observed adjacency 

matrix.  In order to measure the full strength of the hypothesis test, it must be evaluated 

for accuracy.  The best way to evaluate accuracy is to investigate the type I and type II 

errors of the hypothesis test.  To this end, a test network was constructed where the 

underlying attribute partitions were formed arbitrarily and level and cross-level dyad 

parameters were assigned.  Based on the dyad probabilities of the constructed network, 

simulated networks were generated for hypothesis test evaluation.  Since the partitions 

and corresponding parameters were arbitrarily assigned, the partitions truly explaining 

observed adjacency matrix variability are known.  Given this knowledge, the hypothesis 

test was evaluated to see if it could correctly identify partitions explaining adjacency 

matrix variability.   

4.2. Constructing the Test Network 

 For the purpose of evaluation, the partitions explaining adjacency matrix 

variability were specified before evaluation of the proposed methodology took place.  As 

such, the correct results were known.  That is, if the methodology correctly identified the 

attribute partitions explaining adjacency matrix variability, it was known.  It was also 

known if the methodology failed to identify the attribute partitions explaining adjacency 

matrix variability.   



4-2  

 With the partitions explaining adjacency matrix variability known before 

evaluation began, the level and cross-level parameters were arbitrarily assigned.  With 

this information specified, the “True” Dyad Probability Matrix (TDPM) was constructed 

where the elements of the TDPM represent the actual probability of dyad occurrence 

based on the known partition assignment and corresponding parameters.  It was this 

TDPM which was used to generate random networks for the evaluation of the proposed 

methodology.   

4.3. Underlying Structure of the Test Network  

 To evaluate the proposed methodology, n = 20 network nodes were arbitrarily 

assigned to two k = 2 level partitions.  The level assignments for partition one were: 

Level 1 ≡ {1 – 4, 14 – 16} and Level 2 ≡ {5 – 13, 17 – 20}.  The level assignments for 

partition two were: Level 1 ≡ {1 – 2, 7 – 20} and Level 2 ≡ {3 – 6}.   

 These levels are simple to represent in column form.  If a node is assigned to level 

one, it is given a value of zero, while if a node is assigned to level two, it is given a value 

of one.  For the remainder of this evaluation, the attribute partitions are referred to as 

“test columns”.  The reasoning behind this notation is that a level is simply a subset of the 

nodes contained in the observed network as broken down by attribute.  Each subset is 

stored as a column vector containing the list of nodes and their corresponding level 

assignment.  For the evaluation of the proposed methodology, three test columns are 

used.  Test columns one and two completely explain the variability in the observed 

adjacency matrix, while test column three does not.  Table 4-1 details the test columns 

used for evaluation.   
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Table 4-1: Test Columns 

Node 
Test  

Column 1  
Test  

Column 2  
Test  

Column 3  
1 0 0 0 
2 0 0 1 
3 0 1 0 
4 0 1 1 
5 1 1 0 
6 1 1 1 
7 1 0 0 
8 1 0 1 
9 1 0 0 
10 1 0 1 
11 1 0 0 
12 1 0 1 
13 1 0 0 
14 0 0 1 
15 0 0 0 
16 0 0 1 
17 1 0 0 
18 1 0 1 
19 1 0 0 
20 1 0 1 

 

4.4. Evaluating the Type I and Type II Errors of the Hypothesis Test 

 Monte Carlo simulation was used to evaluate the hypothesis test through the 

generation of simulated adjacency matrices based on the TDPM.  The test columns were 

used to inspect the variability of these simulated adjacency matrices, reporting whether or 

not the test columns explained the observed variability.  As with any statistical analysis, it 

is desirable to control type I error, the probability of false alarm or finding that a partition 

explains variability in the observed adjacency matrix when, in reality, the partition does 

not.  The issue that arises is that when two or more partitions are explored, type I error 

becomes difficult to control.  The general reason for this is due to the presence of 

partitions which are not mutually orthogonal.  In the case where partitions are mutually 
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orthogonal, they can be viewed as independent.  Assuming independence, the 

experimentwide error rate, denoted α, is  

 

( )01 1 tα α= − −      (4.1) 

 

where t denotes the total number of test columns being evaluated and α0 denotes the     

p̂ -value required for a test column to be found statistically significant.  In the case of 

mutually orthogonal partitions, the experimentwide error rate will equal α.  In the more 

common case where partitions are not mutually orthogonal, the experimentwide error rate 

will be less than or equal to α.  In other words, α is the upper bound on error, ensuring 

that with enough repetitions, error will not exceed this specified threshold (Wu and 

Hamada, 2000: 133).   

 To find an “across the board” statistical significance threshold for each column 

being tested, (4.1) must be solved for α0:  
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0

log 1
1 exp
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α

α
−⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

    (4.2) 

 

In this evaluation of the hypothesis testing framework, α = .05 and t = 3.  Solving (4.2) 

for α0 yields a required statistical significance threshold of .017.  A p̂ -value ≤ .017 will 

ensure that the type I error rate is less than or equal to .05.   
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 The evaluation centered on whether or not the hypothesis test detected network 

structure both when it was and was not present.  That is, how often did the hypothesis test 

fail to detect the presence of structure when no structure was truly present?  Similarly, 

how often did the hypothesis test detect structure when some level of structure truly 

existed?  Finding no structure when none is present is desirable, while finding structure 

when none is present is type I error.  It should be mentioned that the estimated type I 

error will vary with each simulation run conducted, but, over a sufficient number of runs, 

the estimated error will approach, if not drop below, the specified error rate.  With this in 

mind, one thousand simulation runs were conducted.   

 Finding structure when it is truly present is desirable, while failing to find 

structure when it is truly present is type II error.  As with type I error, it is desirable to 

control type II error.  In fact, from the estimated type II error, the “power” of the 

hypothesis test can be estimated (Montgomery, 2001: 34).  Power calculation is:              

1 – Prob(Type II Error).  The higher the estimated power of the hypothesis test, the more 

reliable the test is.   

 There are two aspects of type II error evaluation which are explored.  The first 

aspect is when the magnitude of difference between p1, p2, and p12 is large, that is,          

p2 >> p1.  The second aspect is when the magnitude of difference between p1, p2, and p12 

is small, that is, p1 > p2.  In both aspects, the probability of type II error was explored, as 

well as the probability of identifying all test columns responsible for structure and 

identifying at least one test column responsible for structure.  It would stand to reason 

that the greater the magnitude of difference between partition parameters, the better the 

evaluation will perform.     
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4.5. Verifying Hypothesis Test Accuracy 

 In the case where no network structure was present, all dyads formed with a 

probability of .2, thus p0 = .2.  From the results of the simulated experiments, the 

estimated type I error is .0153, well below the upper bound of .05.  As such, the estimated 

probability of correct detection is .9847.  This shows that the hypothesis test performs 

well by failing to reject the null hypothesis when no structure is present.   

 Table 4-2 shows the case when structure is present in the network and the 

magnitude of the difference between partition parameters is large.   

 

Table 4-2: Structure Present, Large Magnitude Between Partition Parameters 
 p1 p2 p1,2 
Partition 1 0.25 0.75 0.10 
Partition 2 0.25 0.75 0.10 

 

With these parameter values, the estimated probability of detecting structure when 

structure is present is one.  That is, the estimated power of the test is one and type II error 

is estimated to be zero.  The probability that all truly significant test columns are deemed 

significant for each simulation run is one, as is the probability that at least one truly 

significant test column is deemed significant for each simulation run.  These are good 

results for the hypothesis test, and show that, when applied to level parameters with a 

large magnitude of difference, the hypothesis testing framework performs accurately.   

 Table 4-3 shows the case when structure is present in the network and the 

magnitude of the difference between partition parameters is small.   
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Table 4-3: Structure Present, Small Magnitude Between Partition Parameters 
 p1 p2 p1,2 
Partition 1 0.80 0.75 0.30 
Partition 2 0.80 0.75 0.30 

 

With these parameter values, the estimated probability of detecting structure when 

structure is present is .884.  With the estimated power of the hypothesis being .884, the 

estimated type II error is .116.  The probability that all truly significant test columns are 

deemed significant for each simulation run is .994, and the probability that at least one 

truly significant test column is deemed significant for each simulation run is one.  These 

are good results for the hypothesis test, and show that, when applied to level parameters 

with a small magnitude of difference, the hypothesis testing framework performs 

accurately.   

4.6. Summary 

 Based on the results of section 4.5, it can be safely said that the hypothesis test, 

more often than not, correctly rejects the null hypothesis when structure is present and 

fails to reject the null hypothesis when structure is not present.  In the cases where 

structure was present, the hypothesis testing framework accurately identified structure, 

although, as would be expected, it identified structure better in the case where there was a 

large magnitude of difference between partition parameters.   

 The result of this evaluation is the verification of the accuracy of a robust 

hypothesis test able to determine which partitions explain observed adjacency matrix 

variability.  With these partitions known, social network analysts can better focus their 

time and resources towards the partitions which will yield the greatest amount of insight 
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into social networks.  As more information on clandestine social networks is uncovered, 

the proposed methodology provides a gauge of both the quality and use of new 

information, ensuring analyst efforts achieve the greatest possible success.   
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5. Conclusions and Recommendations 

5.1. Introduction 

 This thesis proposed a tractable, statistically sound method with which to test 

observed clandestine social networks for non-random structure by partitioning the 

network based on nodal attributes.  Like many other statistical applications, this method 

employs hypothesis tests, seeking to discover if the observed network variability is 

explained by the underlying partitions.  Partitions appearing to explain network 

variability were further investigated using social network analysis tools.   

5.2. Methodology 

 The methodology introduced both a binomial probability mass function and 

likelihood function parameterized based on network variables.  Proposing an alternative 

hypothesis, where network structure was explained by the partitions of the observed 

adjacency matrix, against a null hypothesis, where network structure was not explained 

by the partitions, a likelihood statistic was found for both hypotheses.  Though comparing 

the two, a ratio statistic was found and used as the test statistic.  By comparison to a set 

statistical significance threshold, the partition under investigation was evaluated to see if 

it explained non-random structure observed in the network.   

5.3. Results 

 In order to test the network model, a “truth” network was constructed where the 

partitions influencing network formation were known, allowing the ability to gauge the 

quality of model results.  Through the use of a confusion matrix, along with various other 
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metrics, the model was evaluated for proper operation.  Though false positives, or type I 

error, did occur during some tests, the rate at which they occurred was acceptable based 

on the error threshold specifications of the evaluation.  These results showed the network 

model to be well constructed and capable of identifying partitions able to identify and 

explain the presence of non-random structure.   

5.4. Future Efforts 

 As mentioned in section 5.3, false positives occurred, resulting in finding an 

attribute responsible for explaining network structure when it actually is not.  While this 

error is excusable, reducing or even eliminating the number of false positives is still 

desirable.  Future studies using the network model should focus on the reduction of false 

positives.   

 The issue of missing data can be approached in several ways (Nysether, 2007:    

2–19).  While this effort implemented an assumption to fill gaps in the Sageman data, 

other options are at the analyst’s disposal.  For instance, a subject matter expert (SME) 

could be consulted to gain knowledge of the individual under investigation.  Since SME 

knowledge comes from both outside knowledge and operational experience, it often 

provides the best way with which to fill in missing data.  Assuming that the knowledge is 

sound, it can be incorporated into existing datasets.  In the cases where SME advice is 

just an educated guess, a quantifiable method must be employed in which to gauge the 

quality of the estimate.  To this end, it is suggested that a method such as linear 

regression be leveraged to fill in missing data.  With the results from such a method on 

hand, SMEs can be consulted to verify that the results of the regression are both 
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reasonable and realistic.  Using linear regression and SME knowledge in tandem will 

couple a statistically sound method with real-world knowledge.   

 Another area in which to expand research is in dealing with levels containing only 

one node.  Due to the scope of this study, these cases were neglected.  As proposed, the 

network model is more than capable of dealing with these cases, but not enough time was 

available to explore them.   

 Potential future research lies in using P̂ , the weighted dyad probability matrix.  

Since P̂  is constructed based on the partitions explaining observed network structure, it 

details the probability of the existence of both observed and unobserved arcs.  With these 

probabilities calculated, both the dyads with high probability of formation and the dyads 

with low probability of formation are known.  This provides two more ways in which to 

investigate the observed network.  One way is to explore the dyads which are known to 

exist but have a low probability of existence.  This has a direct application to small-world 

theory which proposes that everyone is loosely connected with everyone else in the 

world.  If an arc is known to exist between nodes, but the probability of that arc existing 

is minimal, those two nodes must have something in common which caused the tie to 

form but has not yet been revealed.  What is the cause and how can it be leveraged to 

disrupt the network?  It is these kinds of answers that the analyst seeks to discover.   

 The other application is to investigate the arcs which have a high probability of 

existing but are not observed.  Is this due to operational security (OPSEC) and military 

deception (MILDEC) measures?  Perhaps something occurred to drive a wedge between 

these two nodes.  When the reasons for not observing these dyads are known, more 

insight is gained into the network, resulting in improved network analysis.  The 
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computational and visual aspects of programs like UCINET and AGNA are perfect for 

exploring P̂ .  By comparing the observed network to the one generated from whatever 

aspect of P̂  is being investigated, it may perhaps be possible to see through the OPSEC 

and MILDEC measures employed in the operation of the clandestine network.   

 As specified, the adjacency matrix used to test partitions for network structure 

contained undirected arcs.  As a result, the dyad probability matrices corresponding to 

each attribute are symmetric because pij = pji.  The limitation of this representation is that 

dyads formed between nodes are assumed to have the same “weight” or authority.  That 

is, an undirected arc does not take into account rank or influence one person (node) has 

over another.  To incorporate this sort of relationship, Bayesian networks can be 

employed to show direction of dyads based on conditional probabilities between the two 

nodes.  In addition, employing a weighted Bayesian network would incorporate both 

direction of dyads and the authority one node has over another.  In either case, the 

resulting dyad probability matrices might no longer be symmetric because now it is 

possible that          pij ≠ pji.  In the case of working with a weighted Bayesian network, 

both elements pij and pji must be investigated simultaneously to see which node is “higher 

ranked”.  The element with the higher probability of dyad occurrence might represent the 

higher ranked individual as the originating node.  The cases where pij = pji might 

represent peers because the two nodes have the same probability of dyad occurrence due 

to having the same amount of influence.   

 The alternative hypothesis used for this study was that at least one attribute 

contributed to network formation.  Although this was the only hypothesis explored, the 
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alternative hypothesis is not limited to that form.  Another such form of the alternative 

hypothesis is 

 

1 2 3 1,2 1,3:A h ijH p p p p p p p< < < < < < < <… …    (5.1) 

 

Notice that the form of the alternative hypothesis in (5.1) specifies strength of dyad 

probability in respect to the other probabilities.  Nothing mandates that the probabilities 

be in ascending or descending level or cross-level order, this was simply done for the 

sake of illustration to generalize this form for the alternative hypothesis.  Another form of 

the null hypothesis could be to propose that ph or pij are equal to some probability while 

the alternative hypothesis tests if this is truly the case.  Either way, the network model is 

capable of handling such tests.   

 It may also be possible to use the network model to find out information about an 

observed network when nothing else is known other than the partition level each node is 

assigned to.  To investigate this aspect, the testing of an observed network would have to 

be conducted where the correct results are known prior to testing.   

 For this research, dyads were assumed to be conditionally independent based on 

the partition.  Certainly, factors exist in every network which influence dyad formation.  

The problem that arose, motivating this assumption, was that finding an overall 

generalized expression to sum this up was beyond the scope of this research.  Work has 

been done in the field of correlated Bernoulli trials (Vireos, Balasubramanian, and 

Balakrishnan), but such studies were conducted with time as the main factor.  That is not 

the case for social networks, where the ties between players are the main factors.  If a 
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method were developed which incorporated variable correlation into the network model, 

many new doors would be opened for the methodology detailed in this study.  One 

possible aspect would be the incorporation of other probability distributions, thus 

allowing the model to be expanded past the current bounds of the binomial distribution.   

5.5. Conclusion 

 While this study focused on the clandestine social networks of terrorist 

organizations, the methodology proposed herein is applicable to many other social 

networks.  For instance, with the increasing popularity of websites like 

www.myspace.com and programs used for “instant messaging”, an abundant amount of 

data presents itself, as individuals list their “friends” or “contacts”.  From these lists, 

social networks can be constructed.  Depending on how these networks are built, the 

strength of the ties between members can be incorporated.  By examining a network 

constructed of weak ties, small-world theory is incorporated.  It has been suggested that 

small-world theory is possibly the best representation of both group affiliation and 

connectivity.  Since the model only tests the specified network inputted, the decision of 

what kind of network to both construct and investigate is left up to the analyst.  Because 

of this, the analyst is responsible for the interpretation of the results yielded by the 

network model.   

 The major benefit of this model is reducing the amount of data required to 

investigate.  As the level of data increases, the ability of analysts to separate the “wheat 

from the chaff” decreases.  The unforeseen result of this is sometimes referred to as “data 

paralysis”.  For this reason, the network model presented here was developed and 
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demonstrated.  As the quality of clandestine social network analysis increases, so does 

the analyst’s ability to gain insight into the workings of terrorist organizations.  With this 

improved insight, the analyst can present findings to decision makers, allowing them to 

make better and more informed decisions.  As the quality of peacetime and wartime 

decisions increases, so will the ability of the United States to execute the Global War on 

Terror.   
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6. Appendix A: Supplemental Material 

6.1. Maximum Likelihood Estimates for ph and pij for the k = 3 Level Partition 
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Expanding (6.1) out yields: 
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The next step is to take the derivative of (6.2) with respect to the probability parameter 

being estimated.  If p1 was the desired parameter, the derivative would be taken with 

respect to p1.  That is: 
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Setting (6.3) equal to zero and solving for p1 yields: 
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1
1

1

ˆ dp
N

=      (6.4) 

 

Note that in (6.4), the hat denotes parameter estimation.  In general, the estimation of ph 

is:  
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To estimate cross-level probabilities, the derivative of (6.2) is taken with respect to the 

cross-level probability being estimated.  If p12 was the desired parameter, the derivative 

would be taken with respect to p12.  That is:  
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Setting (6.6) equal to zero and solving for p12 yields: 
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Again, the hat in (6.7) denotes parameter estimation.  In general, the estimation of pij is:  
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6.2. Reducing L1 to L0 for the k = 3 Level Partition 

The necessary variables for the k = 3 case are: 

• Level Variables: d1, d2, d3, p1, p2, p3 

• Cross-Level Variables: d12, d13, d23, p12, p13, p23  

L1 is constructed using the above variables:   
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Substituting p1 = p2 = p3 = p12 = p13 = p23 = p0 into (6.9): 
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Combining terms simplifies (6.10) down to: 
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Using (3.2) simplifies (6.11) to: 
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Eliminating opposite choose operations reduces (6.12) to: 
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Though inserting summations, (6.13) becomes: 
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The summations of (6.14) could also be written as:  
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Applying (6.15) to (6.14) yields:  

 

[ ]
1 0 0 0(1 ) N ddL p p L−= − =      (6.16) 

 

 While this example was for the k = 3 case, it generalizes to all values of k.   
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